On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:
[pə'li:s]
существительное
[pə'li:s]
общая лексика
полиция
употр. с гл. во мн. ч. полицейские
наведение порядка
поддержание спокойствия
защита закона
полицейский
военное дело
уборка
поддержание чистоты
употр. с гл. во мн. ч. наряд
уборка, поддержание чистоты
глагол
общая лексика
поддерживать порядок (с помощью полиции)
нести полицейскую службу
обеспечивать полицейской охраной
наблюдать за проведением в жизнь (условий какого-л. соглашения и т. п.; о войсках ООН)
обеспечивать проведение в жизнь (каких-л. мероприятий с помощью вооружённой силы)
управлять
контролировать
охранять
поддерживать порядок (в стране)
обеспечивать полицией (город, район)
военное дело
чистить
приводить в порядок (лагерь)
чистить, приводить в порядок
In cryptography, concrete security or exact security is a practice-oriented approach that aims to give more precise estimates of the computational complexities of adversarial tasks than polynomial equivalence would allow. It quantifies the security of a cryptosystem by bounding the probability of success for an adversary running for a fixed amount of time. Security proofs with precise analyses are referred to as concrete.
Traditionally, provable security is asymptotic: it classifies the hardness of computational problems using polynomial-time reducibility. Secure schemes are defined to be those in which the advantage of any computationally bounded adversary is negligible. While such a theoretical guarantee is important, in practice one needs to know exactly how efficient a reduction is because of the need to instantiate the security parameter - it is not enough to know that "sufficiently large" security parameters will do. An inefficient reduction results either in the success probability for the adversary or the resource requirement of the scheme being greater than desired.
Concrete security parametrizes all the resources available to the adversary, such as running time and memory, and other resources specific to the system in question, such as the number of plaintexts it can obtain or the number of queries it can make to any oracles available. Then the advantage of the adversary is upper bounded as a function of these resources and of the problem size. It is often possible to give a lower bound (i.e. an adversarial strategy) matching the upper bound, hence the name exact security.